The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch.

نویسندگان

  • Neil T Sheehy
  • Kimberly R Cordes
  • Mark P White
  • Kathryn N Ivey
  • Deepak Srivastava
چکیده

Neural crest cells (NCCs) are a subset of multipotent, migratory stem cells that populate a large number of tissues during development and are important for craniofacial and cardiac morphogenesis. Although microRNAs (miRNAs) have emerged as important regulators of development and disease, little is known about their role in NCC development. Here, we show that loss of miRNA biogenesis by NCC-specific disruption of murine Dicer results in embryos lacking craniofacial cartilaginous structures, cardiac outflow tract septation and thymic and dorsal root ganglia development. Dicer mutant embryos had reduced expression of Dlx2, a transcriptional regulator of pharyngeal arch development, in the first pharyngeal arch (PA1). miR-452 was enriched in NCCs, was sufficient to rescue Dlx2 expression in Dicer mutant pharyngeal arches, and regulated non-cell-autonomous signaling involving Wnt5a, Shh and Fgf8 that converged on Dlx2 regulation in PA1. Correspondingly, knockdown of miR-452 in vivo decreased Dlx2 expression in the mandibular component of PA1, leading to craniofacial defects. These results suggest that post-transcriptional regulation by miRNAs is required for differentiation of NCC-derived tissues and that miR-452 is involved in epithelial-mesenchymal signaling in the pharyngeal arch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelin regulates neural crest deployment and fate to form great vessels through Dlx5/Dlx6-independent mechanisms

Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway i...

متن کامل

miR-204 Targeting of Ankrd13A Controls Both Mesenchymal Neural Crest and Lens Cell Migration

Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a) rearrangement of cell-cell and cell-substrate adhesion molecules; b) cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures impl...

متن کامل

MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells.

Epithelial-mesenchymal transition (EMT) is an initiating event in tumor cell invasion and metastasis that contributes to therapeutic resistance to compounds including cisplatin. MicroRNAs (miRNAs) have been associated with EMT as well as resistance to standard therapies. However, the underlying mechanisms by which miRNAs control the development of resistance to cisplatin (DDP), and the accompan...

متن کامل

Hh signaling regulates patterning and morphogenesis of the pharyngeal arch-derived skeleton.

The proper function of the craniofacial skeleton requires the proper shaping of many individual skeletal elements. Neural crest cells generate much of the craniofacial skeleton and morphogenesis of skeletal elements occurs in transient, reiterated structures termed pharyngeal arches. The shape of individual elements depends upon intrinsic patterning within the neural crest as well as extrinsic ...

متن کامل

A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme.

Numerous human syndromes are the result of abnormal cranial neural crest development. One group of such defects, referred to as CATCH-22 (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate, hypocalcemia, associated with chromosome 22 microdeletion) syndrome, exhibit craniofacial and cardiac defects resulting from abnormal development of the third and fourth neural crest-derived b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 24  شماره 

صفحات  -

تاریخ انتشار 2010